
SHARP APL Release 20.0

Guide for
APL Programmers

J.P. Sharp Associates Limited, a Reuter Company

SHARP APL is a registered trademark of I.P. Sharp Associates Limited, a Reuter Company.

A publication of:

I.P. Sharp Associates Limited, a Reuter Company

Software Technology Division
2 First Canadian Place. Suite 1900
Toronto, Ontario
Canada MSX 1E3

Printed in Canada. September 1989

© LP. Sharp Associates Limited. a Reuter Company 1989

All rights reserved. Reproduction in whole or part is prohibited without the written

consent of the copyright owner.

The information contained in this publication is accurate to the best of the

company's knowledge. However, I.P. Sharp Associates Limited disclaims any

liability resulting from the use of this information and reserves the right to make

changes without notice.

D Publication code: 1047-8909-E20

PREFACE

rr
 i — — M ——Q

Abstract

This manual describes ail changes to SHARP APL since Release 19.0 as they

relate to programmers. it should be read by all programmers using SHARP APL

(professional programmers as well as occasional interactive users). It is designed

to be used with the SHARP APL Reference Manual and the Guide for APL

Programmers for previous releases of SHARP APL; these books provide a

complete description of what SHARP APL is and how best to use it.

This manual and the Internal and Operational Changes manual describe all of

the changes to SHARP APL for Version 20.

Related Publications

The following publications provide information that may be of use when

programming with SHARP APL. Copies of these publications can be obtained

from your I.P. Sharp representative.

Function Monitor Facility User Guide, publication code 0749-87 11-E1

Internal and Operational Changes, publication code 1049-8909-E20

SHARP APL Reference Manual, publication code 79RMOS

Transaction Reporting Facility Programmer's Guide, publication code

1054-8909-E20

“A Dictionary of APL,” Kenneth E. Iverson, in APL Quote Quad. volume 18,

number 1, September 1987

Conventions Used in This Manuai

For all examples of input and output used in this manual, the index origin system

variable, Ci o. is set to zero.

Examples used in this manual have the position and spacing system variable,

Dps.setto 1 ^ 1 0 1 unless specified otherwise.

Examples of input to (and output from) SHARP APL use the APL character set.

(You can display the APL character set using the system function Dav.) In the

APL character set, the letters A through Z occur three times. The examples in this

manual use the first alphabet, Dav[86126]. When necessary, second

a

Version 20
iii

a

Guide for APL Programmers

e Ge ee Ge ee ee SS ne

alphabet characters, LJavL 1134126], are used. Third alphabet characters

(Gav(166+126]) are not used in this manual.

First alphabet characters are represented in this manual as follows. These

characters are obtained by typing in the base (unshifted) keyboard.

Dav[86+126]
abcdefghijklmnopqrstuvwxyz

Second alphabet characters are represented as follows. These characters are

obtained by specifying the alternate character set (for example, by holding

down the Alt key) and typing the desired characters.

Cav[113+126]
ABCDEFGHIJKLMNOPQRSTUVWXYZ

Due to the wide variety of input and output devices that can be used with

SHARP APL, the first and second alphabets used in the examples may not be the

same as those that appear on your terminal or printer. To determine what the

first and second alphabets look like on your terminal (or printer), display (or print)

the appropriate locations in la v.

WWW]
SHARP APL

CONTENTS

RENE. 4 a - ee

PREFACE

Abstract

Related Publications

Conventions Used in This Manual

CHAPTER 1. INTRODUCTION

— CHAPTER 2. LANGUAGE ENHANCEMENTS

In (€) Added

Nubsieve (+) Added

Format (7) Modified

Raze (+) Added

Disclose (>) Modified

= CHAPTER 3. FILE SYSTEM ENHANCEMENTS

Ofhold Modified

Library Access Controls Added

create

e Orename
Olib

Ordacl
Ostacl

Ocreate Modified

Ordfi Added

CHAPTER 4. SYSTEM ENHANCEMENTS

Transaction Reporting Facility Added

Function Monitor Facility (£m) Added
Termination Workspace ID (Oltwsid) Added

2 Ows 3 Modified
Osc Post at Shutdown
6 Ows Modified

Changes to Shared Variable Functions

Monadic [1s vn Modified
Dyadic (1s vn Added

Osva Modified
(svo Modified

CHAPTER 5. OTHER ENHANCEMENTS
Fix Functions fx and 3 Ofa Modified

System Function Editor Modified

ONNO

12

14

14

14

14
14

15

15

17

17

18
19

20

20
21
22

23

25
25

M

Version 20
v

Guide for APL Programmers

a a —————————

) opr and) oprn Messages to System Console 26

Modified Character Control for Non-APL Asynchronous Terminals 26

Non-APL Asynchronous Character Control Function 27

CHAPTER 6. FUNCTIONS AND PRODUCTS NO LONGER SUPPORTED

APL MPX Interface (AMPX) Replaced 29

Terminal Types That Are No Longer Supported 29

INDEX 31

E] mm

vi SHARP APL

CHAPTER 1. INTRODUCTION TO SHARP APL RELEASE 20

SHARP APL Version 20 is the product of changes to the base system and to the

file system, along with any corresponding changes necessary to other parts of

the system. These changes are designed to help your data center meet the

growth needs of your APL user community. Version 20 includes system

enhancements and improved capabilities that can help your data center

provide efficient, dependable service to a large volume of concurrent APL

Users.

Language Enhancements

The following new and changed functions in the SHARP APL language are

included in Version 20:

In is now available to assist in pattern-matching searches.

Nubsieve is now available to determine unique major cells in numeric,

character, and boxed data.

/ Format is changed so that the result of a dyadic format with an empty vector for
IFE i A ; A

a left argument is now identical to the result of a monadic format.

Raze is now available to reconstitute arrays of data by opening the elements of

the array and assembling the opened elements along the leading axis.

Disclose is changed to permit a permissive treatment of frame building. Disclose

now automatically pads your data so that you can mix data of differing ranks

and shapes, making boxed data simpler and more intuitive to use.

File System Enhancements

The following new and changed functions make the SHARP APL file system more

efficient and easier to use.

Ofholdis changed so that you can hold a range of file components rather

(4.8 than the entire file. This permits several applications to hold the same file

i simultaneously as long as the ranges held do not overlap.

EE ee ee MÀ M —

Version 20 1

Guide for APL Programmers

LL

e Library access controls are available to permit you to grant access to entire

libraries, rather than on a file-by-file basis. These controls govem which accounts

can create, rename, and list files in your library, as well as who can read or set

the library access controls.

Ocreate is changed so that you can specify a starting component number

when you create a file. This makes it easier to match component ranges of files

imported from other systems.

Ord fi is now available to report the account number and time stamp

information associated with the creation of a specified file, the latest setting of

its access matrix, and its latest aiteration.

System Enhancements

The following new and changed functions are available to set or report on

system information. These enhancements can help you efficiently use the

services and resources available with SHARP APL.

The Transaction Reporting Facility is available to collect information on the use of

SHARP APL. The information collected is stored in a system file and can be used

as the basis for applications such as determining usage statistics, application

e performance analysis, or customer billing systems.

O fm, the function monitor facility, is now available to measure and report on

CPU time and elapsed time used during the execution of user-defined functions.

This facility can be used for monitoring entire functions or specific lines within

functions.

14,8

Otwsid. the termination workspace ID function, is now available so that you

can specify whether the current workspace is to be saved in the event of the

abnormal termination of a task. It also allows you to specify a termination

workspace ID (other than the default, cont inue) to be used for the saved

workspace.

2 Ows 3,the workspace reporting function. is changed so that it can now

provide information on the pending shutdown of APL and on the effective

workspace size.

19,8

SHARP APL now issues a Osc post to all tasks suspended for a state-change wait

15,5 when a shutdown of APL is pending. This permits tasks to prepare for the

impending shutdown by performing internal housekeeping chores.

The shared variable functions Os vn, Ls vo. and (1s vq are modified to permit

SHARP APL Version 20 to be used in conjunction with I.P. Sharp's Network Shared

© Variable Processor (NSVP) which will be available sometime in the future.

ama

2
SHARP APL

Introduction

e Other Enhancements

198

The following changes to SHARP APL make the system easier to use, more

versatile, and more efficient.

The fix functions (]1£x and 3 (£d are changed to simplify the importing of APL

functions from other APL systems to SHARP APL.

The systern editor for APL functions is changed to make it more versatile in the

handiing of error conditions.

Messages to the SHARP APL operator are now routed to the system console

rather than to opr1 (account number 314159).

The scope of the character control system command,) cc, is changed to make

the setting of the character control table easier by including default settings for

individual accounts or for the entire system. The character set is expanded to

permit easier translation between the available settings. When an account is

logging on to the system, either character control setting is accepted.

The character control function is available to allow you to set the character

control table within an application.

e Products and Functions No Longer Supported

Version 20

The following products and functions are not supported in Version 20 of SHARP

APL:

The APL MPX interface (AMPX), which provided access to SHARP APL systems for

asynchronous terminals, is replaced by the ATH/E terminal handler.

DCTTAPE and IBM 2741 terminals are no longer supported by SHARP APL.

Guide for APL Programmers

EE N e MÀ

EE EE GEE AAA.
 ccr qae

4
SHARP APL

CHAPTER 2. LANGUAGE ENHANCEMENTS

eneee M TTT

This chapter contains information on the new and changed primitive functions

available with SHARP APL. Formal definitions of some functions are reprinted

from Kenneth Iverson's "Dictionary of APL.”

In (€) Added

The dyadic primitive function € (in, also referred to as string search or

epsilon-underbar) indicates all occurences of one array within another. For an

array w and a pattem (array) a, the statement

beaeo

produces a Boolean array b such that the ones in b indicate the beginning

points of the pattem a in w. The array b has the same shape as w. Both à and w

can be arrays of any rank.

This function is formaily defined as follows. Note that 3% (3 cut) is not yet

implemented in SHARP APL.

acw = ((R1,,0Pa)39«0)e«a

The following two examples illustrate the use of €:

'to' € 'toronto!

1000010

0 1-.+13) € 4li-.+i*15 (
0
0
1
0
0 Oooo OHOOO OOOOO OOOOO

Version 20
5

Guide for APL Programmers

e M ———— — — M ———

Nubsieve (Z) Added

The monadic primitive function x (nubsieve) indicates the unique major cells

within an array. For an array x of any rank, the statement

bezx

produces a Boolean vector b such that:

- the elements in b correspond to the major cells of x

- an element of b will be a 1 if its corresponding major cell is unique with

respect to all preceding major cells; otherwise it is a 0

For lists, nubsieve can be formally defined as follows (using Direct Definition

notation). For arrays, major cells are compared in place of list elements.

ns: PO: xPw: (<\~a) Va \ns(awi pw)/w

Note that if the comparison tolerance variable (Oct)is not needed in the

comparisons. this definition can be simplified to ns: (w1w)=1pw.

The following three examples illustrate the use of the nubsieve primitive:

Z(1 3P13)53 3P19

1011

(;b)»x»(bezx)7?x-» 10<! bill adam james bill

george ed james ed john!

1 bill bill

1 adam adam

1 james james
0 bill george

1 george ed

1 ed john

0 james
0 ed

1 john

Ie
SHARP APL

Language Enhancements

Format (*) Modified

The dyadic primitive function * (format, often referred to as thorn to distinguish it

from Ofmt) was modified (Release 19.8). Dyadic * now accepts an empty

vector as its left argument, causing the right argument to be formatted

according to the rules of monadic *. This can be stated as follows:

(''$0) = tw

The following example illustrates the use of dyadic Ti

name+60 10P864lav a employee names
pay*? 60 1P4000 a pay

empno+? 60 1P1000 n employee number

Vreold

[1] r-'10a1,15,f8.2' Ofmt name>empno>pay

V

Vrenew;llps

[1] Ops+0
[2] res (''>25 028 2)% > name>empno>pay

V

In addition to using the new formatting capabilities, tne function new executes

approximately three times faster than the function old, which uses Ofmt.

Raze (+) Added

The monadic primitive function + (raze) is used to reconstitute arrays of data by

assembling the opened elements of the array along the leading axis. The array

may be of any rank.

Raze is formally defined as follows. Note that the first and third parts of this

definition are not valid statements in SHARP APL.

(49) = $4 »70 if the leading axis is greater than one

(+w) = (1tPW)PEPO if the leading axis equals zero

(49) = 17">(1+Pw)PW if the leading axis equals one

EG teem

Version 20

Guide for APL Programmers

a ee

© This definition can be summarized as follows.

If the leading axis of the argument is greater than one, the result is computed by

disclosing the scalar elements making up the argument (if necessary).

catenating the elements along the leading axis, and enclosing the result. The

rank of the result is one less than the rank of the argument.

For scalars and non-empty vectors, the result is the scalar or vector enclosed.

(The elements making up the argument are disclosed. if necessary.)

For empty arrays (for example, 5 0 4 P '"), the result is empty.

The following special cases are handled by *.

- For an array of shape 0 v (where v is any integer vector), the result has the

shape v. If v is an empty array, the result is empty. If v is not empty, the result

is computed as described above. This is shown in the following example (Ops

issetto 1 1 2 2X

LIEI!
LIEI
MANA

e - Forarrays with a leading axis of one, the shape of the result is obtained by

dropping the leading axis. (That is, for an array of shape 1 n, with n being

any vector, the result has the shape n .) If the resulting array is not empty, the

cells of the result are enclosed. If the resulting array is empty. the result is

empty. This can be seen as follows:

P1 3 04 P 0

1304
P+1 304 P 0

3: U4

EE ee ee M
SHARP APL

8

Language Enhancements

a M M —

The following additional example illustrates the use of monadic +. (For this

example. Dpsissetto 1 1 2 22lnthe example, a character string is

cut into words, the word andis replaced with the word or, and the revised

string is displayed.

x-29«'This and that and these and those. '

>x

This or that or these or those.

Disclose (>) Modified

Tne monadic primitive function > (open or disclose) has been extended to

provide permissive treatment of the individual cells of a boxed array. This allows

you to disclose several boxes at one time, with the data fitting together in a

regular shape even when the boxes contain data of different shapes. When

applied to an array with no boxed elements, disclose has no effect.

The rank of the disclose function is zero; the shape of its argument is also its

frame. To construct an array within this frame, each major cell in the result of the

disclose operation must share a common shape. This shape is based on the

maximum rank and shape of the individual cells after the disclose operation.

If the ranks of items differ after the disclose operation, items of lesser rank are

raised to the maximum common rank through the addition of leading unit

lengths. If the shapes of items differ, items are brought into common shape by

taking the maximum common shape and padding with the fill element. The

shape of the result is the shape of the argument catenated to the maximum

common shape. in the example below, the shape of the argument (4) is

catenated to the maximum common shape after the disclose of the individual

items (5), giving the result a shape of 4 5.

NENNEN Mitt i. EE
9

Version 20

“ r

Guide for APL Programmers

AT ETA EE EE EER SS SST STS TS SS

The following example illustrates the permissive disclose function. For this

example Dpsissetto 1 1 2 2.

We lose! the quick brown fox."

E É nm BEER Baar.
|the| | quick||brown| | fox. |

eke EEN B Ed ese

>w

the

quick

brown

fox.

PAY

L N Gee Ge ee ee Pep rd
SHARP APL

10

CHAPTER 3. FILE SYSTEM ENHANCEMENTS

This chapter describes the additions and changes to the SHARP APL file system.

O fhold Modified

Version 20

The function O fhold has been modified to allow you to hold a range of file

components rather than the entire file. This modification permits several users to

hold the same file simultaneously as long as the ranges held do not overlap.

The format of the modified L] fhold function is as follows:

r-Ofhold w

where w specifies the arguments for the file hold. The range of file components

to be held is specified in w as follows. In all cases, the range is considered empty

if the lower bound is greater than the upper bound.

- Ifwis an array with four rows, for any given column the first row is the tie

number, the second row is the pass number, the third row is the lower

bound, and the fourth row is the upper bound of the range. Bounds are

specified as integers from -2147483648 to 2147483647 , inclusive.

- If w is an array with three rows, the first row is the tie number, the second

row is the pass number, and the third row is an integer from -2147483648 to

2147483647, inclusive, specifying the component to be held.

- If w is a scalar, a vector, or an array with one or two rows, the range is

assumed to be from -2147483648 to 2147483647, inclusive.

Executing the monadic function Ofhold (or hold) releases the held ranges

of all currently held files and then acquires holds on the specified ranges.

Executing the dyadic function 1 Ofhold retains the held ranges on all

currently held files and acquires holds on the specified ranges. If a file is currently

held and is specified in the argument to 1 Ofhold, the new range must be

identical to the old range (or a domain error results). When 1 Ofholdis

issued using a three or four row right argument, it results in a three row array;

each column of this array contains the tie number (first row), lower bound

(second row), and upper bound (third row) of a held range.

* s

Guide for APL Programmers

mmea

e Library Access Controls Added

With SHARP APL Version 20, an access control matrix can be associated with an

entire file library, as well as with individual files. This library access matrix, which is

similar in structure to the matrices used to grant access to files, is set by the

Ostac1 function (described later in this chapter). When it is set, the library

access matrix defines the following:

- which accounts can create and rename files in the library

- which file names are returned from a Olib request

- which accounts can read and set the library access matrix.

The format of the library access matrix is an n by 3 matrix. As with file access

matrices, each row of the matrix contains the account number, permission

number, and pass number.

Account number. This is the APL account number to which you are assigning

permission. A zero (0) in this column grants the access permission specified to all

accounts that are not explicitly specified elsewhere in the access matrix for the

given pass number.

Permission number. This number defines the permission granted to the specified

account. A permission number of minus one (^ 1) grants unlimited access to the

o library. Other permission numbers are the sums of the appropriate permission
codes in the following table. (For example, to grant permission to rename files

and to read the library access matrix, set the permission number to '18' -- code

2 plus code 16.)

Code Operation permitted

1 Create files in library (create)
2 Rename files in library (Jrename)

4 List files in library (using O1 ib from another account) - if this code is

not specified, no files are listed; if it is specified, only files that the

account has some form of access to are listed

8 List all files in library (using 01 ib from another account); note that an

account must also have permission code '4' to list another account's

files

16 Read the library access matrix (Jrdac1)
32 Set the library access matrix (Ostacl)

Pass number. This number is the pass number needed for the specified access. A

zero (0) in this column permits the access specifed to the appropriate accounts

without a pass number or with the pass number '0'.

MAA

12 SHARP APL

File System Enhancements

A typical library access matrix might look like the following:

1111112 1 0
1726354 3 987

0 12 654

The library access granted by this matrix is as follows. Note that this access is in

addition to the access implicitly associated with each library access matrix

(described later in this section).

- Thefirstrow (1111112 1 0) permits account number 1111112

unlimited access with no pass number to the library files.

- Thesecondrow(1726354 3 987) permits account number

1726354 to create and rename files in the library using pass number 987.

- Thethirdrow (0 12 654) permits any account to list all of the files in

the library using pass number 654, regardless of individual file access.

Three rows of default access information are implicitly associated with each

library access matrix. These rows are as follows:

library 1 0

0 4 0
0 0 (not 0)

The first row (library Tk 0) ensures that an account always has

complete access to its own library. This access information takes precedence

over the information in the access matrix set by Ostac1.

The second and third rows take effect after the information in the access matrix

set using Ostacl and provide default access for accounts not referred to in

the matrix.

The second row (0 4 0) sets the permission code to ' 4! for all accounts

not specified (either explicitly or implicitly using account number O) in the matrix

assigned by [1st ac. This permits accounts to list only those files in the library

that the account has some form of access to, unless additional permission is

specified elsewhere in the library access matrix.

The third row (0 0 (not 0))sets the permission code to O (zero) for all

non-zero library pass numbers not explicitly specified using (1st ac1.

File functions that are affected by the library access matrix are: (create,

Drename, Olib, Ordacl, and Ostacl.

GE GE Ge ee Ge ee ee te

13

Guide for APL Programmers
€ Á— —

— M M—

create

The Ocreate function now accepts a library pass number in its right argument.

The format of the create function is as follows:

'fn' Ocreate tn (,cn C,lpn))

where £n is the name of the file being created, tn is the tie number, cn is the

component number, and lpn is the library pass number. (The concept and use

of the component number is described later in this chapter.)

Orename

The Orename function now accepts a library pass number in its right argument.

The format of the Orename function is as follows:

'fn' Orename tn (,pn (C,lpn))

where fn is the name of the file being renamed, tn is the tie number, pn is the

file pass number, and 1pn is the library pass number.

Olib

The (11 ib function now accepts a library pass number in its right argument. The

format of the [].1 ib function is as follows:

Olib library (,lpn)

where library is the library number and lpn is the library pass number.

Ordacl

A new function, Ordacl, allows certain accounts to read the library access

matrix for a specified library. The format of the Olrdac1 function is as follows:

Ordacl library (,lpn)

where library is the library number and 1pn is the library pass number.

Ostacl

A new function, Ostac1. allows certain accounts to set the access matrix of

the specified library. The format of the Ostac1 function is as follows:

[> — mem
SHARP APL

File System Enhancements

lam Ostacl library (,1pn)

where lam is the library access matrix (described earlier in this chapter),

libraryisthe library number, and 1pn is the library pass number.

create Modified

The create file function now accepts the starting component number as a

right argument. The format of the [create function is as follows:

'fn' [create tn (,cn (,lpn))

where £n is the name of the file being created, tn is the tie number, cn is the

starting (and next to be used) component number, and 1pn is the library pass

number. The component number must be a positive integer. If a library pass

number is specified, the starting component number must be supplied and must

be non-zero.

The following is an example of the create command. In this example, a file

called wanda is created starting at component number 68. (The [size

function verifies the, creation and starting component number of the file.)

'wanda' []create 1 68

Osize 1
68 68 0 102620

Ordfi Added

A new system function that reports on file information, Ordfi. is now available.

This function provides the account number and time stamp information

associated with the following file operations:

- the creation of the file

- the latest setting of the file access matrix

- the latest alteration of the file.

The permission code for using Drd £i is 65536.

The format of the Ord £i function is as follows:

z+-Ordfi tn (,pn)

EE ———————————————

Version 20
15

Guide for APL Programmers

a — M
—— M —

$ where tn represents the file tie number and pn represents the file pass number,

which is optional.

The result of (1rd £i is a matrix of shape 4 2. This matrix contains the following

information. The time stamp information is given in sixtieths of a second since

March 1, 1960. The function £tt in the 1 ts workspace can convert this to

Dt s format.

- The first row of information relates to the creation of the file (using the

Ocreate function). It contains the number of the account that created

the file followed by the time stamp information from when the file was

created.

- The second row relates to the latest setting of the file access matrix (using

the Ostac function). It contains the number of the account that last set

the file access matrix followed by the time stamp information from when it

was set.

- The third row is reserved for future use. It is currently set to minus ones (179).

- The fourth row relates to the latest alteration of the file using one of the

following functions: Dappend, Dappendr, Odrop, Urename,

Oreplace, orOresize. It contains the number of the account that last

& altered the file followed by the time stamp information associated with that

alteration.

The following is a sample result of the Ordfi function.

1.726354000e6 5.580219021e10

1.726354000e6 5.589528844e10

~1.000000000e0 ~1.000000000e0

7.858878000e6 5.597212603e10

Note: The number of rows of information provided by Ordfi may increase with

future releases of SHARP APL. Avoid using the statement

"1+,Ordfi tn

to obtain the time of the latest alteration of a file, as it may provide incorrect

results in future releases of SHARP APL.

[WWW]
SHARP APL

16

CHAPTER 4. SYSTEM ENHANCEMENTS

This chapter describes the new and changed functions available to set or report

on system information.

Transaction Reporting Facility Added

The Transaction Reporting Facility monitors the use of SHARP APL at the

transaction level. Using this facility, you can specify which events you wish to

record, such as calls to a database or time elapsed while using specific

applications.

By developing applications based on the information collected by this facility,

you can implement a wide variety of projects based on transaction data. These

could include such projects as usage statistics, application performance

analyses, and customer billing systems.

For information on the design and use of the Transaction Reporting Facility, refer

& to the Transaction Reporting Facility Programmer's Guide, publication code

1054-8909-E20.

Function Monitor Facility (0 fm) Added

The system function O £m (the Function Monitor Facility) measures and reports on

the CPU time and elapsed time used during the execution of user-defined

functions (Release 19.8).

O fm can be used to monitor user-defined functions as well as individual lines

within functions.

Using D £m, you can specify which workspace functions are to be monitored

and the amount of detail you want reported. For example, you can monitor the

number of times a function is executed and the amount of CPU time and

elapsed time spent during execution (with or without monitoring subfunction

calis). You can monitor individual lines within a workspace function, reporting on

the number of times the lines were executed, CPU time, elapsed time, and so

on.

For more information on O fm, refer to the Function Monitor Facility User Guide,

e publication code 0749-871 1-E1.

aa N N ———————————————————————

Version 20
17

Guide for APL Programmers

Termination Workspace ID (Ut ws id) Added

The active workspace of a task that was interrupted by an external event is

saved by SHARP APL whenever possible. For terminal tasks and shared tasks

(T-tasks and S-tasks), the name of the saved workspace is cont inue. For batch

tasks and non-terminal tasks (B-tasks and N-tasks), the name is determined from

the parameters set with Orun.

A new system function, Ot ws id. is available. Using this function, you can

perform the following:

- Inquire whether the active workspace is to be saved if the task terminates

abnormally.

- Specify that the active workspace is not to be saved if the task terminates

abnormally.

- Specify the workspace ID to be used for saving the active workspace if the

task terminates abnormally. This workspace ID can include a lock on the

workspace or a library in which to store the workspace. (The library must

belong to the user number that the task was run on.)

The format of the Dt ws i d function is as follows:

Otwsid a

where a is one of the following:

1 (one) Save the active workspace using the current termination

workspace ID

“1 (minus one) Do not save the workspace

0 (Zero) Return the current setting of Ot ws id (one or minus one)

' ' (empty vector) Retum the current termination workspace ID

t string! Set the termination workspace ID to the identifier

specified in string. This may be one ofthe following:

- A valid workspace name (such as 'crashid!)

- A valid workspace name followed by a colon and a

password (such as 'crashid: lock")

- The account's library number followed by a space, a

valid workspace name. and (optionally) a colon and

password (such as '1726354 crashid: lock")

[NI]

18 SHARP APL

System Enhancements

The termination workspace ID can also be defined in terms of information that is

associated with the current task. For example, the statement

Otwsid 'abc!,*1POruns

sets the workspace termination ID to ABCxxxx, with xxxx being the task ID.

Notes

1. To save a termination workspace with a name other than continue, the

account workspace quota must allow the account to save at least one

more workspace.

2. The result of Otwsid with a valid numeric right argument is the previous

setting of the numeric value of Ot ws id.

3. The result of Ot wsid with either an empty vector or a valid identifier as its

right argument is a 22 character vector containing the library number and

identifier of the previous setting of the termination workspace ID. The

password, if any, is not returned.

2 [ws 3 Modified

The workspace reporting function 2 Ows 3 now provides information on the

pending shutdown of APL and on effective workspace size.

2 [ws 3 results in a 12-element vector. The second element of this vector,

(2 Ows 3) [Bio+1],indicates pending shutdown of APL. Its value is normally

O (zero). If its value changes from Oto 1 (one), a shutdown is pending.

When a shutdown is started, new tasks may not be initiated on the system. For

existing tasks, some parts of APL may be withdrawn prior to the interruption of

user tasks (such as HCPRINT or the batch task scheduler).

You may want your batch applications to check for pending shutdown at

certain points to permit general housekeeping tasks to be performed before the

shutdown. The ability to detect and prepare for a shutdown can be used to

ease the recovery and integrity, checking problems that normally result from à

system crash. For more information on this topic, refer to “Osc Post at Shutdown:

later in this chapter.

The third element of the 12-element vector result of 2 Ows 3 provides the

effective size for a clear workspace. This element, (2 Ows 3) (0io-*2].

reports the actual size in bytes of the workspace that is under direct control of

the APL application, excluding control blocks internal to the interpreter.

a ee ee ee ee Ge ee ee mm

19

Guide for APL Programmers

EE ee Ge ee ee ee ee M ——

The ability to determine actual workspace size can be useful when you are

designing large applications. For example, since you can now accurately

determine the amount of area available for demand-paging space, you may

want to consider implementing a demand-paging scheme for APL objects

within the workspace.

6 Ows Modified

The result of issuing 6 [ws with the name of a shared variable with no value as

a right argument is now a domain error. in previous releases of SHARP APL,

the resultwas a result error.

Osc Post at Shutdown

An impending shutdown of APL can now be ascertained by examining the

second element of 2 Ows 3(see'2 Ows 3 Modified,” earlier in this chapter).

Using this information, tasks can perform internal housekeeping chores before

the shutdown occurs (assuming that, for normal shutdowns, your installation has

a period of grace in which tasks can complete before they are interrupted).

When an APL shutdown has been initiated, all tasks suspended for a

state-change wait (a Osc wait, not a shared variable wait) are posted. This post

can benefit applications that employ background tasks or server tasks. Consider

the following generalized function:

V serve

[1] go:process

[2] »(2 Ows 3)[Dio+1]Pshutdown
[3] -OscPgo
[4] shutdown:cleanup

V

work to do

is shutdown pending?

wait for some work
general cleanup D D D D

in the event of a shutdown, the function does not immediately suspend on

execution of Osc: it continues as if a post had just occurred. This gives programs

the opportunity to detect and prepare for shutdown. This should streamline

recovery procedures when APL restarts. For example, if the application writes a

"clean shutdown" record when it ends normally, checking for this component

would determine whether you need to perform the recovery and integrity

checking procedures normally undertaken after abnormal termination.

EE ee ee ee ee ee ee ee ane
SHARP APL

System Enhancements

© Changes to Shared Variable Functions

Changes to the shared variable function [1svn. Osvo, and [15 vq are included
in SHARP APL Version 20. These changes permit Version 20 to be compatible with

I.P. Sharp's Network Shared Variable Processor (referred to as NSVP) once it is

released for distribution.

Monadic Us vn Modified

The monadic (1s vn function is now able to accept a wider range of right

arguments. Possible values for the right argument now include character vectors

and three-element arrays of character vectors. (Originally, the function only

accepted a numeric scalar as a right argument.)

The format of monadic (1s vn is as follows:

Úsvn arg

where arg is a numeric scalar, an enclosed scalar or vector, or a character

vector.

. If arg is a scalar and your active workspace is not sharing variables using a

different clone ID, Us vn sets the clone ID for your active workspace to arg. The

o result is the current clone ID (either the value of arg or the previously existing

clone ID). If your active workspace does not have a current clone ID and the

requested clone ID cannot be implemented because another task with the

same processor ID is using the specified clone ID, the result is 1.

If arg is a character vector representing the system ID, the result is the numeric

value of the system ID. The result is 1 if your workspace does not currently have

a clone ID and the default clone ID is being used by another task with the same

processor ID. (The default clone ID is O (zero).)

If arg is a three-element array of character vectors (containing the system ID,

account name, and account password, respectively), the result is the numeric

value of the system ID or 1.

The following examples show the use of []svn:

Osvn 'mvs05!

305050

Osvn 'sysi'»'gibson'2'sg1962'
301010

rr E EE te ——————

Version 20 21

Guide for APL Programmers

e Note: Your acitve workspace can only use one numeric system ID at a time. To

change the numeric system ID, you must end the link to the NSVP on the remote

system using dyadic Os vn, then reassign the system ID using monadic Us vn.

Dyadic (1s vn Added

Dyadic Os vn is now available. it is used to disconnect the link to the NSVP on

the remote system. The format of dyadic Os vn is as follows:

nnn (svn ''

where nnn is either the numeric system ID assigned by monadic svn or 0

(zero). If it is a system ID, the specified link is disconnected. If it is zero, any

existing link to the issuing account is disconnected.

Osvg Modified

The Osvg function now accepts a wider range of right arguments. Possible

values for its right argument now include an enclosed null value and a three-

element vector. (Originally, it only accepted a null value and a two-element

vector for its right argument.)

e If the right argument is an enclosed null value (for example, < t 0), the result is a

three-column matrix, with each row containing the system ID, processor ID, and

clone ID of an outstanding offer to share a variable.

If the right argument is a three-element vector containing system ID, processor

ID, and clone ID, the result is a matrix with each row containing the name of a

variable the specified processor is offering to share with your account.

The following examples illustrate the use of []s vq. Note the ~1 in the result of

the first example. This shows that the offer was made by a task on the same

system as your active workspace (not on a remote system). You can use “las

the system ID in a three-element vector argument to Os vq or in a three-column

matrix argument to Os vo: this treats variables shared with tasks on your system

in the same manner as variables shared with tasks on a remote system.

Osvg «10
304050 314158 99

1 124 4017

Osvg (304050 314158 99)
var0l

apple2

@ revnum9

[2]

22 SHARP APL

System Enhancements

Osvo Modified

Dyadic Os vo now accepts a three-column matrix as a left argument. The three

columns should contain the system ID, processor ID, and clone ID of task or tasks

to which you offered the variable(s) specified in the right argument. The result of

this function is the degree of coupling for the specified variables. Note that if

you specify a system ID of ^ 1, you are offering to share variables with a task

(represented by the processor ID and clone ID) on the same system as your

active workspace.

The following example shows the use of [1s vo:

(1 3 P 304050 314158 99) Osvo 'var01'

EE a M — M —

Version 20 23

. * Guide for APL Programmers

DM ee

TTT EE

24
SHARP APL

CHAPTER 5. OTHER ENHANCEMENTS

This chapter describes other changes and additions to SHARP APL.

Fix Functions 0 fx and 3 (fd Modified

The fix functions £x and 3 []£d have been modified to simplify the importing

of APL functions from other APL systems to SHARP APL (Release 19.8).

The fix functions no longer produce an error result in the following situations:

- for empty (all blank) lines

- forlines containing the following invalid expressions:

e unbalanced quotes

o third alphabet characters (Javl 166-4 1261) not in quoted strings

e invalid system function names or system variable names

e invalid numeric constants.

- for lines containing the box-drawing characters for IBM 3270-type terminals

- (Dav(241+111])in quoted strings passed to the fix function.

System Function Editor Modified

The system function editor (V editor) has been modified (Release 19.8) as

follows:

- Empty (all blank) lines created by one of the fix functions can be displayed

or deleted. Empty lines cannot be entered using the system function editor.

- You can enter lines containing the following invalid expressions without

producing an error result:

unbalanced quotes

third alphabet characters (JavL 166-1263) not in quoted strings

invalid system function names or system variable names

invalid numeric constants. o 0 0 O

EE ede mm

Version 20 E 25

Guide for APL Programmers

- You can display and delete lines containing the box-drawing characters

for IBM 3270-type terminals (JavL 241-4111 1). Lines containing these

characters cannot be entered or edited using the system function editor.

)opr and) oprn Messages to System Console

The system commands) opr and) oprn. used for sending messages to the

SHARP APL operator, no longer send messages to opr1 (account number

314159). These commands now send messages to the system console.

If you require a reply from the operator, use the) opr command: your

messaged is highlighted at the system console until it is answered. Your

keyboard locks and you suspend execution until the reply is recieved.

Notes:

1. If you send a message to) opr and then break out of the wait state, it is

unlikely that you will receive a reply to your message from the operator.

Since the) opr and) oprn commands now send messages to the system

console, sending "polite" messages (such as "thanks opr.../rick’)
to the APL operator should be avoided to help keep the system console

free for important messages.

Modified Character Control for Non-APL Asynchronous Terminais

Several changes have been made to the character control system command,

) cc. (For a description of this command, refer to the Release 19 Guide for APL

Programmers, publication code 0375-8703-E 19.)

The following changes to) cc might affect your application programs:

The character control default setting (new or old) for your SHARP APL

system can now be set when the system is started up.

The character control defauit setting for a particular account number can

be set in the user profile.

Valid character control settings now include normal (the same as new)

and reverse (the same as old).

Response from the command is either norma 1 (if the previous setting was

normal or new) or reverse (if the previous setting was old or

reverse).

MET m TE SE ASAS SE

26 SHARP APL

Other Enhancements

- Additional characters have been included in the character set of o1d so

that data written for new translates correctly when oldis specified. These

are the characters 96, ", |, 8, ,", & and # and the box-drawing characters .
for IBM 3270-type terminals (Dav[240+111)).

Future enhancements to SHARP APL will permit the ATH/V and ATH/E

terminal handlers to support these characters.

Non-APL Asynchronous Terminal Character Control Function

A new monadic character control function, cc, is available (Release 19.8). This

function is similar to the system command) cc. (For more information on the

)cc command, refer to the Release 19 Guide for APL Programmers, publication

code 0375-8703-E19 and "Modified Character Control for Non-APL Asynchronous

Terminals" in this chapter.) Both cc and) cc provide enhanced support for

asynchronous terminals, but cc can be used in user-defined functions, unlike

the) cc command.

The function is available in the 1 ws £ns workspace. The format of the function

is as follows:

zecc a

If a is an empty vector (' '), the result is a character vector containing the

current translation table name.

If a is a character vector with a maximum of 7 characters (including leading or

trailing blanks) containing the name of a valid translation table, the current

table is changed to the specified name and the result is a character vector

containing either normal or reverse. lis normal if the previous setting was

new or normal:itis reverse if the previous setting was old or reverse.

If a is an invalid argument (such as an unsupported table name), the result is a

domain error.lfa isa character vector longer than seven characters, the

result is a length error.

There are two valid settings for cc: old or reverse and new or normal. The

results of these settings are described in the Release 19 Guide for APL

Programmers.

Note: If the function cc is already used in an application, the translation table

can also be selected using an alternate function, Cc, also in the 1 wsfns

workspace.

TT

27

: Guide for APL Programmers

BENDUM...
 D Ln nn d

mem

28 SHARP APL

CHAPTER 6. PRODUCTS AND FUNCTIONS NO LONGER SUPPORTED

€ ee € —— M ——— € ————

This chapter lists the products and functions not supported by SHARP APL

Version 20.

APL MPX Interface (AMPX) Replaced

The APL MPX Interface (AMPX). which provided access to the SHARP APL system

through asynchronous terminals, is no longer supported. Some terminal types

which used this interface, such as IBM 2741-type terminals, are no longer

supported. Asynchronous ASCII terminal support is now available using the

Asynchronous Terminal Handler/Emulation Program Support (ATH/E).

For more information on asynchronous ASCII terminal support, refer to the EPH

User's Guide, publication code 0738-8703-E1.

Terminal Types That Are No Longer Supported

SHARP APL no longer supports the following terminal types:

- DCT500 terminals operating at 300 baud

- |BM 2741-type terminals

For a list of asynchronous terminals currently supported. load the 5 term

workspace and display the variable terminals.

[WD
29

Version 20

o Guide for APL Programmers

SS tt

ED

30 SHARP APL

INDEX

AMPX (the APL MPX interface) replaced 29

APL character set, representation of iii- iv

asynchronous terminal support 29

cc function. See character control function.

character control function (co) 27-28

character control system command ()co) 27

DCCTAPE terminal 3

DCT500 terminal 29

disclose function (>) 9

epsilon-underbar function. See in function.

first alphabet. See APL character set.

fix functions

Dfx 25
3 Ofd 25

e format function (7) 7
ftt function to convert dates to Ots format 16
Function Monitor Facility (fm) — 17

holding files 11

in function (€) 5
index origin system variable (Dio) iii

library access matrix

definition of 12

format of 12-13

functions affected 13

permission codes, list of 12

reading the matrix. Seelrdacl.

setting the matrix. SeeOstacl.

messages to the APL operator 26

nubsieve function GE)
description 6

without comparison tolerance function 6

a —————————— ————————— SS ERR

Version 20 31

^ ** * Guide for APL Programmers

& open function. See disclose function.

position and spacing variable (Ops) ii

Uav, location of letters in iv

Ocreate 14,15
Oct. used with nubsieve function — 6
Ofhold 11

Ofm 17
Ofx 25
(hold 11

Dio iii

Olib 14

Ops ii
Ordacl 14
Ordfi 15 - 16

Orename 14

Osc post at shutdown 20
Ostacl 14

Osvn
dyadic 22

monadic 21

Osvo 23
Osvq 22

e Otwsid 18-19

raze function (+) 7-9

read file information function (Urdfi)
format 15

functions affected 16

permission code required 15

result of — 16
releasing a file hold = 11

second alphabet. See APL character set.

shared variable functions

Osvn 21,22

Osvo 23
Osvq 22
6 Ows function 20

string search function. See in function.

system function editor (V editor) 25

terminal types that are no longer supported 29

termination workspace ID function (Ltwsid) 18-19

third alphabet. See APL character set.

thorn function. See format function.

DD — ee

32
SHARP APL

index

Transaction Reporting Facility

1 Ofhold 11

2741-type terminals 29

2 Dws 3function 19

3 Ofdfunction 25

) cc system command 27
) opr system command 26
)oprn system command 26

V editor 25

* function

€ function

z function

» function

+ function “oo as

DDD] EE

Version 20
33

